

Welcome to TellStick ZNet’s documentation!

TellStick ZNet allows developers to build own plugins and scripts run the device
to extend the functionality with features not yet supported by Telldus.

It is also possible to alter the behaviour on how TellStick ZNet should
interpret signals and messages from devices.

	Intro
	Python

	Lua

	Lua
	Example: Real wind

	Example: Zipato RFID

	Python plugins
	Installation

	Anatomy of a plugin

	Building a deployable plugin
	Setting up a key

	Build the plugin

	Local API
	Authentication
	Step 1 - Request a request token

	Step 2 - Authenticate the app

	Step 3 - Exchange the request token for an access token

	Step 4 - Making a request

	Refreshing a token

	Extending
	Prepare the plugin

	Export a function

	A complete example

	API reference
	Module: base

	Module: scheduler

	Module: telldus

Intro

TellStick ZNet offers two ways of integrating custom scripts. They can be
written in either Python or Lua. The difference is outlined below.

Python

Python plugins are only available for TellStick ZNet Pro. Python plugins cannot
be run on TellStick ZNet Lite. Python plugins offers the most flexible solution
since full access to the service is exposed. This also makes it fragile since
Python plugins can affect the service negative.

Lua

Lua code is available on both TellStick ZNet Pro and TellStick ZNet Lite. Lua
code runs in a sandbox and has only limited access to the system.

To create a Lua script you need to access the local web server in TellStick ZNet.
Browse to: http://[ipaddress]/lua to access the editor.

Lua codes works by signals from the server triggers the execution.

Lua

	Example: Real wind

	Example: Zipato RFID

Example: Real wind

A thermometer measures the actual temperature but it is not the same as the
perceived temperature. To get perceived temperature you must also take the wind
into account. If TellStick ZNet has an anemometer this can be used to calculate
the perceived temperature.

The script below calculates this and gives the anemometer a thermometer value.

Source of the algorithm:
http://www.smhi.se/kunskapsbanken/meteorologi/vindens-kyleffekt-1.259

-- EDIT THESE

local windSensor = 287
local tempSensor = 297

-- DO NOT EDIT BELOW THIS LINE

local tempValue = deviceManager:device(tempSensor).sensorValue(1, 0)
local windValue = deviceManager:device(windSensor).sensorValue(64, 0)

function calculate()
 if tempValue == nil or windValue == nil then
 return
 end
 local w = math.pow(windValue, 0.16)
 local v = 13.12 + 0.6215*tempValue - 13.956*w + 0.48669*tempValue*w
 v = math.floor(v * 10 + 0.5) / 10
 local windDevice = deviceManager:device(windSensor)
 windDevice:setSensorValue(1, v, 0)
end

function onSensorValueUpdated(device, valueType, value, scale)
 if device:id() == windSensor and valueType == 64 and scale == 0 then
 windValue = value
 calculate()
 elseif device:id() == tempSensor and valueType == 1 and scale == 0 then
 tempValue = value
 calculate()
 end
end

Example: Zipato RFID

Telldus does not support the RFID reader from Zipato.

http://www.zipato.com/default.aspx?id=24&pid=88&page=1&grupe=0,2_15,3_37,0

It can be used any way with some Lua code.

-- Change these
local zipatoNodeId = 892

local tags = {}
-- Add tags below

-- Example code from a tag
-- tags[1] = {device=881, code={143, 188, 119, 84, 42, 0, 1, 4, 0, 0}};
-- Code for entering 1-2-3-4 on the keyboard
-- tags[2] = {device=813, code={49, 50, 51, 52, 0, 0, 0, 0, 0, 0}};

-- Do not change below

COMMAND_CLASS_USER_CODE = 0x63
USER_CODE_SET = 0x01
USER_CODE_REPORT = 0x03
COMMAND_CLASS_ALARM = 0x71
ALARM_REPORT = 0x05

local zipatoNode = deviceManager:device(zipatoNodeId):zwaveNode()

function compareTags(tag1, tag2)
 for index, item in python.enumerate(tag2) do
 if item ~= tag1[index+1] then
 return false
 end
 end
 return true
end

function configureTag(index)
 local data = list.new(index, 1)
 for key,code in pairs(tags[index]['code']) do
 data.append(code)
 end
 zipatoNode:sendMsg(COMMAND_CLASS_USER_CODE, USER_CODE_SET, data)
 print("A new tag was configured in the Zipato.")
 print("This will be sent the next time the reader is awake")
end

function checkNewTag(code)
 -- New tag received. Check if it should be configured?
 for key,tag in pairs(tags) do
 if compareTags(tag['code'], code) then
 configureTag(key)
 return
 end
 end
 -- Not yet configured. Must be configured first.
 print("New unknown tag received. Add this to the codes if this should be recognized")
 print("Tag data is %s", code)
end

function handleAlarm(data)
 if list.len(data) < 8 then
 return
 end

 local event = data[5]
 local tag = data[7]
 local device = deviceManager:device(tags[tag]['device'])
 if device == nil then
 print("Device not found")
 end
 if event == 5 then
 print("Away, tag %s", tag)
 zipatoNode:sendMsg(0x20, 0x01, list.new(0xFF))
 device:command("turnoff", nil, "RFID")
 elseif event == 6 then
 print("Home, tag %s", tag)
 device:command("turnon", nil, "RFID")
 end
end

function onZwaveMessageReceived(device, flags, cmdClass, cmd, data)
 if device:id() ~= zipatoNodeId then
 return
 end
 if cmdClass == COMMAND_CLASS_ALARM and cmd == ALARM_REPORT then
 handleAlarm(data)
 return
 end
 if cmdClass ~= COMMAND_CLASS_USER_CODE or cmd ~= USER_CODE_REPORT then
 return
 end
 local identifier = data[0]
 local status = data[1]
 if identifier == 0 and status == 0 then
 checkNewTag(list.slice(data,2))
 return
 end
end

-- This command clears all configured codes in the reader
-- zipatoNode:sendMsg(COMMAND_CLASS_USER_CODE, USER_CODE_SET, list.new(0, 0))

Python plugins

Python plugins offers the most flexible way of extending the functionality of TellStick. To get started a development environment should first be setup on a computer running Linux or macOS. Windows is not supported at the moment.

Installation

Check out and follow the instructions on getting the server software running on a computer here:
https://github.com/telldus/tellstick-server

After installation the tellstick server is installed without any plugins. For development the lua-plugin is a
recommended plugin to install. Install it with:

./tellstick.sh install lua

Telldus own plugins are open source and can be used as a base for new plugins. These can be found here:
https://github.com/telldus/tellstick-server-plugins

This guide will describe the example plugin found here:
https://github.com/telldus/tellstick-server-plugins/tree/master/templates/device

The plugin adds one dummy device to the system.

During the development it is recommended to install it within the server software. This way the software will
restart itself whenever a file has changed. To install it use the tellstick command install:

./tellstick.sh install [path-to-plugin]

Replace [path-to-plugin] with the path to the plugin root folder.

Anatomy of a plugin

TellStick plugins are packaged as python eggs combined in a zip file. The eggs are signed with a pgp signature.

The metadata for a plugin is described in the file setup.py. This is a standard setuptools file with a couple custom configurations added.

#!/usr/bin/env python
-*- coding: utf-8 -*-

try:
 from setuptools import setup
except ImportError:
 from distutils.core import setup

setup(
 name='Dummy device',
 version='1.0',
 author='Alice',
 author_email='alice@wonderland.lit',
 category='appliances',
 color='#2c3e50',
 description='Dummy template for implementings device plugins',
 icon='dummy.png',
 long_description="""
 This plugin is used as a template when creating plugins that support new device types.
 """,
 packages=['dummy'],
 package_dir = {'':'src'},
 entry_points={ \
 'telldus.startup': ['c = dummy:Dummy [cREQ]']
 },
 extras_require = dict(cREQ = 'Base>=0.1\nTelldus>=0.1'),
)

Most of the fields can be found in the setuptools documentation [http://setuptools.readthedocs.io/en/latest/setuptools.html].

	author

	The name of the developer of the plugin. This name must match the pgp signin certificate.

	author_email

	The email of the developer of the plugin. This must match the pgp singning certificate.

	category

	This must be one of:

	security

	weather

	climate

	energy

	appliances

	multimedia

	notifications

	color

	A color used in plugin selection user interface in the format #000000.

	compatible_platforms

	Reserved for future use.

	description

	A short description of the plugins. This should only be one line.

	entry_points

	TellStick plugins can be loaded by one of two entry points.

	telldus.startup

	This plugin will auto load on startup. Use this when it is important that the plugin is always loaded.

	telldus.plugins

	This plugin will be loaded on-demand. This speeds up loading times and keep the memory footprint to a minimum.

	icon

	Filename of icon in size 96x96.

	long_description

	A long description describing the plugin. Markdown can be used.

	name

	The name of the plugin.

	packages

	A list of python packages included in the plugin. This should match the folder structure of the files.
Please see setuptools documentation for more information.

	required_features

	Reserved for future use.

	version

	The version of the plugin.

Building a deployable plugin

Once development is finished it’s time to package the code into a deployable package. Before this command a working
pgp code signing key must be setup on the computer. The name and email must match the metadata author and author_email specified in setup.py.

Setting up a key

You can safely skip this step if you already have a pgp-key setup on your computer.

gpg --gen-key

This will take you through a few questions that will configure your keys.

Please select what kind of key you want: (1) RSA and RSA (default)
What keysize do you want? 4096
Key is valid for? 0
Is this correct? y
Real name: Enter the same name as in setup.py
Email address: Enter the same email as in setup.py
Comment:
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
Enter passphrase: Enter a secure passphrase here (upper & lower case, digits, symbols)

Build the plugin

To build the package use the build-plugin command to tellstick.sh

./tellstick.sh build-plugin [path-to-plugin]

Replace [path-to-plugin] with the path to the plugin root folder. During building the plugin
will be signed using your pgp key and if a passphrase has been setup you will be asked for your password.

This will build a .zip file ready to be uploaded to a TellStick.

Local API

TellStick ZNet has a local REST interface to integrate into third party
applications not running on the TellStick ZNet itself

A list of all available functions can be browsed on the device itself. Browse
to: http://[ipaddress]/api to list the functions.

	Authentication
	Step 1 - Request a request token

	Step 2 - Authenticate the app

	Step 3 - Exchange the request token for an access token

	Step 4 - Making a request

	Refreshing a token

	Extending
	Prepare the plugin

	Export a function

	A complete example

Authentication

Before making any REST calls to TellStick ZNet the application must request a
token that the user has authenticated.

Step 1 - Request a request token

Request a request token by performing a PUT call to the endpoint /api/token. You
need to supply the application name as a parameter “app”

$ curl -i -d app="Example app" -X PUT http://0.0.0.0/api/token
HTTP/1.1 200 OK
Date: Fri, 15 Jan 2016 13:33:54 GMT
Content-Length: 148
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.8.0

{
 "authUrl": "http://0.0.0.0/api/authorize?token=0996b21ee3f74d2b99568d8207a8add9",
 "token": "0996b21ee3f74d2b99568d8207a8add9"
}

Step 2 - Authenticate the app

Redirect the user to the url returned in step 1 to let him/her authenticate the
app.

Step 3 - Exchange the request token for an access token

When the user has authenticated the request token in step 2 the application
needs to exchange this for an access token. The access token can be used in the
API requests. To exchange the request token for an access token perform a GET
call to the same endpoint in step 1. Supply the request token as the parameter
“token”.

$ curl -i -X GET http://0.0.0.0/api/token?token=0996b21ee3f74d2b99568d8207a8add9
HTTP/1.1 200 OK
Date: Fri, 15 Jan 2016 13:39:22 GMT
Content-Length: 230
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.8.0

{
 "allowRenew": true,
 "expires": 1452951562,
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImF1ZCI6IkV4YW1wbGUgYXBwIiwiZXhwIjoxNDUyOTUxNTYyfQ.eyJyZW5ldyI6dHJ1ZSwidHRsIjo4NjQwMH0.HeqoFM6-K5IuQa08Zr9HM9V2TKGRI9VxXlgdsutP7sg"
}

If the returned data contains allowRenew=true then the token was authorized to
renew its expiration itself without letting the user authorize the app again.
The application must renew the token before it expires or else the application
must start the autorization again from step 1.

If allowRenew is not set to true it is not possible for the app to renew the
token and it will always expire after the time set in the parameter “expires”.

Step 4 - Making a request

To make a requst to a TellStick ZNet API endpoint the token in step 3 must be
supplied as a bearer token in the header. This is an example requesting a list
of devices:

$ curl -i -X GET http://0.0.0.0/api/devices/list?supportedMethods=3 -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImF1ZCI6IkV4YW1wbGUgYXBwIiwiZXhwIjoxNDUyOTUxNTYyfQ.eyJyZW5ldyI6dHJ1ZSwidHRsIjo4NjQwMH0.HeqoFM6-K5IuQa08Zr9HM9V2TKGRI9VxXlgdsutP7sg"
HTTP/1.1 200 OK
Date: Tue, 19 Jan 2016 10:21:29 GMT
Content-Type: Content-Type: application/json; charset=utf-8
Server: CherryPy/3.7.0

{
 "device": [
 {
 "id": 1,
 "methods": 3,
 "name": "Example device",
 "state": 2,
 "statevalue": "",
 "type": "device"
 }
]
}

Refreshing a token

If the user allowed the application to renew the token in steg 2 it can be
renewed by the calling application. The token must be refreshed before it
expires. If the token has expired the authentication must be restarted from
step 1 again.

$ curl -i -X GET http://0.0.0.0/api/refreshToken -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImF1ZCI6IkV4YW1wbGUgYXBwIiwiZXhwIjoxNDUyOTUxNTYyfQ.eyJyZW5ldyI6dHJ1ZSwidHRsIjo4NjQwMH0.HeqoFM6-K5IuQa08Zr9HM9V2TKGRI9VxXlgdsutP7sg"
HTTP/1.1 200 OK
Date: Tue, 19 Jan 2016 10:21:29 GMT
Content-Type: Content-Type: application/json; charset=utf-8
Server: CherryPy/3.7.0

{
 "expires": 1455295348,
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImF1ZCI6IkV4YW1wbGUgYXBwIiwiZXhwIjoxNDU1Mjk1MzQ4fQ.eyJyZW5ldyI6dHJ1ZSwidHRsIjo4NjQwMH0.M4il4_2SqJwlCjmuXlU5DS6h-gX7493Tnk9oBJXbgPw"
}

The new token returned must be used from now on and the old be discarded.

Extending

It’s possible to extend the API with new functions from custom plugins.

Prepare the plugin

In order for the API plugin to know about this plugin it must implement the
interface IApiCallHandler

from api import IApiCallHandler
from base import Plugin, implements

class HelloWorld(Plugin):
 implements(IApiCallHandler)

Export a function

Use the decorator @apicall on the function you want to export. This example
exports the function helloworld/foobar:

@apicall('helloworld', 'foobar')
def myfunction(self, arg1, arg2):

A complete example

from api import IApiCallHandler, apicall
from base import Plugin, implements

class HelloWorld(Plugin):
 implements(IApiCallHandler)

 @apicall('helloworld', 'foobar')
 def myfunction(self, arg1, arg2):
 """
 Docs for the function goes here
 """
 return True

API reference

	Module: base

	Module: scheduler

	Module: telldus

Module: base

Classes in the base module are only accessible from Python applications.

	
class base.Application(run=True)

	This is the main application object in the server. There can only be once
instance of this object. The default constructor returns the instance of this
object.

	
registerScheduledTask(fn, seconds=0, minutes=0, hours=0, days=0, runAtOnce=False, strictInterval=False, args=None, kwargs=None)

	
Register a semi regular scheduled task to run at a predefined interval.
All calls will be made by the main thread.

	fn

	The function to be called.

	seconds

	The interval in seconds. Optional.

	minutes

	The interval in minutes. Optional.

	hours

	The interval in hours. Optional.

	days

	The interval in days. Optional.

	runAtOnce

	If the function should be called right away or wait one interval?

	strictInterval

	Set this to True if the interval should be strict. That means if the interval is set to 60 seconds and it was run ater 65 seconds the next run will be in 55 seconds.

	args

	Any args to be supplied to the function. Supplied as *args.

	kwargs

	Any keyworded args to be supplied to the function. Supplied as **kwargs.

Note

The interval in which this task is run is not exact and can be delayed
one minute depending on the server load.

Note

Calls to this method are threadsafe.

	
queue(fn, *args, **kwargs)

	Queue a function to be executed later. All tasks in this queue will be
run by the main thread. This is a thread safe function and can safely be
used to syncronize with the main thread

	
registerShutdown(fn)

	Register shutdown method. The method fn will be called the the server
shuts down. Use this to clean up resources on shutdown.

	
static signal(msg, *args, **kwargs)

	Send a global signal to registered slots.
It is not recommended to call this method directly but instead use the signal decorator

	
class base.mainthread(f)

	
	
@mainthread

	

This decorator forces a method to be run in the main thread regardless of
which thread calls the method.

	
class base.ISignalObserver

	Bases: base.Plugin.IInterface

Implement this IInterface to recieve signals using the decorator @slot()

	
static SignalManager.slot(message='')

	
	
@slot

	

This is a decorator for receiveing signals. The class must implement
ISignalObserver

	Args:

	
	message

	This is the signal name to receive

Module: scheduler

	
class scheduler.base.Scheduler

	
	
addMaintenanceJob(nextRunTime, timeoutCallback, recurrence=0)

	nextRunTime - GMT timestamp, timeoutCallback - the method to run,
recurrence - when to repeat it, in seconds
Returns: An id for the newly added job (for removal and whatnot)
Note, if the next nextRunTime needs to be calculated, it’s better to do that
in the callback-method, and add a new job from there, instead of using “recurrence”

	
calculateJobs(jobs)

	Calculate nextRunTime for all jobs in the supplied list, order it and assign it to self.jobs

	
calculateNextRunTime(job)

	Calculates nextRunTime for a job, depending on time, weekday and timezone.

	
calculateRunTimeForDay(runDate, job)

	Calculates and returns a timestamp for when this job should be run next. Takes timezone into consideration.

	
checkNewlyLoadedJob(job)

	Checks if any of the jobs (local or initially loaded) should be running right now

	
fetchLocalJobs()

	Fetch local jobs from settings

	
receiveJobsFromServer(msg)

	Receive list of jobs from server, saves to settings and calculate nextRunTimes

	
receiveOneJobFromServer(msg)

	Receive one job from server, add or edit, save to settings and calculate nextRunTime

	
runJob(**kwargs)

	None

Note

Calls to this method are threadsafe.

	
runMaintenanceJob(**kwargs)

	None

Note

Calls to this method are threadsafe.

	
successfulJobRun(jobId, state, stateValue)

	Called when job run was considered successful (acked by Z-Wave or sent away from 433), repeats should still be run

Module: telldus

	
class telldus.DeviceManager

	The devicemanager holds and manages all the devices in the server

	
addDevice(**kwargs)

	Call this function to register a new device to the device manager.

Note

The localId() function in the device must return a unique id for
the transport type returned by typeString()

Note

Calls to this method are threadsafe.

	
device(deviceId)

	Retrieves a device.

	Returns:

	the device specified by deviceId or None of no device was found

	
finishedLoading(**kwargs)

	Finished loading all devices of this type. If there are any unconfirmed, these should be deleted

Note

Calls to this method are threadsafe.

	
removeDevice(**kwargs)

	Removes a device.

Warning

This function may only be called by the module supplying the device
since removing of a device may be transport specific.

Note

Calls to this method are threadsafe.

	
retrieveDevices(deviceType=None)

	Retrieve a list of devices.

	Args:

	
	deviceType

	If this parameter is set only devices with this type is returned

	Returns:

	Returns a list of devices

	
class telldus.IDeviceChange

	Bases: base.Plugin.IInterface

Implement this IInterface to recieve notifications on device changes

	
deviceAdded()

	This method is called when a device is added

	
deviceConfirmed()

	This method is called when a device is confirmed on the network, not only loaded from storage (not applicable to all device types)

	
deviceRemoved()

	This method is called when a device is removed

	
sensorValueUpdated(valueType, value, scale)

	This method is called when a new sensor value is received from a sensor

	
stateChanged(state, statevalue)

	Called when the state of a device changed

	
class telldus.Device

	A base class for a device. Any plugin adding devices must subclass this class.

	
BAROMETRIC_PRESSURE = 2048

	Sensor type flag for barometric pressure

	
BELL = 4

	Device flag for devices supporting the bell method.

	
DEW_POINT = 1024

	Sensor type flag for dew point

	
DIM = 16

	Device flag for devices supporting the dim method.

	
DOWN = 256

	Device flag for devices supporting the down method.

	
EXECUTE = 64

	Device flag for devices supporting the execute method.

	
HUMIDITY = 2

	Sensor type flag for humidity

	
LEARN = 32

	Device flag for devices supporting the learn method.

	
LUMINANCE = 512

	Sensor type flag for luminance

	
RAINRATE = 4

	Sensor type flag for rain rate

	
RAINTOTAL = 8

	Sensor type flag for rain total

	
RGBW = 1024

	Device flag for devices supporting the rgbw method.

	
STOP = 512

	Device flag for devices supporting the stop method.

	
TEMPERATURE = 1

	Sensor type flag for temperature

	
THERMOSTAT = 2048

	Device flag for devices supporting thermostat methods.

	
TOGGLE = 8

	Device flag for devices supporting the toggle method.

	
TURNOFF = 2

	Device flag for devices supporting the off method.

	
TURNON = 1

	Device flag for devices supporting the on method.

	
UNKNOWN = 0

	Sensor type flag for an unknown type

	
UP = 128

	Device flag for devices supporting the up method.

	
UV = 128

	Sensor type flag for uv

	
WATT = 256

	Sensor type flag for watt

	
WINDAVERAGE = 32

	Sensor type flag for wind average

	
WINDDIRECTION = 16

	Sensor type flag for wind direction

	
WINDGUST = 64

	Sensor type flag for wind gust

	
_command(action, value, success, failure, **kwargs)

	Reimplement this method to execute an action to this device.

	
battery()

	Returns the current battery value

	
command(action, value=None, origin=None, success=None, failure=None, callbackArgs=[], ignore=None)

	This method executes a method with the device. This method must not be
subclassed. Please subclass _command() instead.

	param action

	description

	return

	return description

Here below is the results of the Device.methods() docstring.

	
isDevice()

	Return True if this is a device.

	
isSensor()

	Return True if this is a sensor.

	
localId()

	This method must be reimplemented in the subclass. Return a unique id for
this device type.

	
static methodStrToInt(method)

	Convenience method to convert method string to constants.

Example:
“turnon” => Device.TURNON

	
methods()

	Return the methods this supports. This is an or-ed in of device method flags.

Example:
return Device.TURNON | Device.TURNOFF

	
sensorValue(valueType, scale)

	Returns a sensor value of a the specified valueType and scale. Returns None
is no such value exists

	
sensorValues()

	Returns a list of all sensor values this device has received.

	
state()

	Returns a tuple of the device state and state value

Example:
state, stateValue = device.state()

	
typeString()

	Must be reimplemented by subclass. Return the type (transport) of this
device. All devices from a plugin must have the same type.

	
class telldus.Sensor

	Bases: telldus.Device.Device

A convenience class for sensors.

	
isDevice()

	Return True if this is a device.

	
isSensor()

	Return True if this is a sensor.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	_command() (telldus.Device method)

A

 	
 	addDevice() (telldus.DeviceManager method)

 	
 	addMaintenanceJob() (scheduler.base.Scheduler method)

 	Application (class in base)

B

 	
 	BAROMETRIC_PRESSURE (telldus.Device attribute)

 	
 	battery() (telldus.Device method)

 	BELL (telldus.Device attribute)

C

 	
 	calculateJobs() (scheduler.base.Scheduler method)

 	calculateNextRunTime() (scheduler.base.Scheduler method)

 	
 	calculateRunTimeForDay() (scheduler.base.Scheduler method)

 	checkNewlyLoadedJob() (scheduler.base.Scheduler method)

 	command() (telldus.Device method)

D

 	
 	Device (class in telldus)

 	device() (telldus.DeviceManager method)

 	deviceAdded() (telldus.IDeviceChange method)

 	deviceConfirmed() (telldus.IDeviceChange method)

 	
 	DeviceManager (class in telldus)

 	deviceRemoved() (telldus.IDeviceChange method)

 	DEW_POINT (telldus.Device attribute)

 	DIM (telldus.Device attribute)

 	DOWN (telldus.Device attribute)

E

 	
 	EXECUTE (telldus.Device attribute)

F

 	
 	fetchLocalJobs() (scheduler.base.Scheduler method)

 	
 	finishedLoading() (telldus.DeviceManager method)

H

 	
 	HUMIDITY (telldus.Device attribute)

I

 	
 	IDeviceChange (class in telldus)

 	isDevice() (telldus.Device method)

 	(telldus.Sensor method)

 	
 	ISignalObserver (class in base)

 	isSensor() (telldus.Device method)

 	(telldus.Sensor method)

L

 	
 	LEARN (telldus.Device attribute)

 	
 	localId() (telldus.Device method)

 	LUMINANCE (telldus.Device attribute)

M

 	
 	mainthread (class in base)

 	mainthread.mainthread() (in module base)

 	
 	methods() (telldus.Device method)

 	methodStrToInt() (telldus.Device static method)

Q

 	
 	queue() (base.Application method)

R

 	
 	RAINRATE (telldus.Device attribute)

 	RAINTOTAL (telldus.Device attribute)

 	receiveJobsFromServer() (scheduler.base.Scheduler method)

 	receiveOneJobFromServer() (scheduler.base.Scheduler method)

 	registerScheduledTask() (base.Application method)

 	
 	registerShutdown() (base.Application method)

 	removeDevice() (telldus.DeviceManager method)

 	retrieveDevices() (telldus.DeviceManager method)

 	RGBW (telldus.Device attribute)

 	runJob() (scheduler.base.Scheduler method)

 	runMaintenanceJob() (scheduler.base.Scheduler method)

S

 	
 	Scheduler (class in scheduler.base)

 	Sensor (class in telldus)

 	sensorValue() (telldus.Device method)

 	sensorValues() (telldus.Device method)

 	sensorValueUpdated() (telldus.IDeviceChange method)

 	signal() (base.Application static method)

 	
 	SignalManager.slot() (in module base)

 	slot() (base.SignalManager static method)

 	state() (telldus.Device method)

 	stateChanged() (telldus.IDeviceChange method)

 	STOP (telldus.Device attribute)

 	successfulJobRun() (scheduler.base.Scheduler method)

T

 	
 	TEMPERATURE (telldus.Device attribute)

 	THERMOSTAT (telldus.Device attribute)

 	TOGGLE (telldus.Device attribute)

 	
 	TURNOFF (telldus.Device attribute)

 	TURNON (telldus.Device attribute)

 	typeString() (telldus.Device method)

U

 	
 	UNKNOWN (telldus.Device attribute)

 	
 	UP (telldus.Device attribute)

 	UV (telldus.Device attribute)

W

 	
 	WATT (telldus.Device attribute)

 	WINDAVERAGE (telldus.Device attribute)

 	
 	WINDDIRECTION (telldus.Device attribute)

 	WINDGUST (telldus.Device attribute)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to TellStick ZNet’s documentation!

 		
 Intro

 		
 Python

 		
 Lua

 		
 Lua

 		
 Example: Real wind

 		
 Example: Zipato RFID

 		
 Python plugins

 		
 Installation

 		
 Anatomy of a plugin

 		
 Building a deployable plugin

 		
 Setting up a key

 		
 Build the plugin

 		
 Local API

 		
 Authentication

 		
 Step 1 - Request a request token

 		
 Step 2 - Authenticate the app

 		
 Step 3 - Exchange the request token for an access token

 		
 Step 4 - Making a request

 		
 Refreshing a token

 		
 Extending

 		
 Prepare the plugin

 		
 Export a function

 		
 A complete example

 		
 API reference

 		
 Module: base

 		
 Module: scheduler

 		
 Module: telldus

